Home / Crops / Crop Tech / Fatty acid levels = healthy soils

Fatty acid levels = healthy soils

03/07/2014 @ 2:16pm

With his Ph.D. in plant science and a long history spent soil-testing with the government and private companies, when Ray Ward speaks about building up soil capacity, people listen.

Ward is still involved with soil testing. In 1983, he and his wife, Jolene, established Ward Laboratories in Kearney, Nebraska, which analyzed 263,000 soil samples and an additional 66,000 samples of livestock feed, forage plants, water, and manure. In his spare time, Ward manages the family farm located near Western, Nebraska.

“There’s a relatively new emphasis in soil testing,” Ward says. “We’re beginning to use the term soil health. Now, we look for more than just the chemical analysis of nutrients like nitrogen, phosphorus, potassium, and trace elements. Soil health can be defined as the soil’s ability to thrive as a living system, while sustaining healthy plant, animal, and human populations. 

“Soil is our most important agricultural resource. It’s an ecological system composed of inorganic minerals, particulate substrates, organic compounds, and living organisms. Healthy soil has numerous species of bacteria, fungi, protozoa, algae, and earthworms – few of which thrive in tilled soil,” says Ward, who is also a no-till consultant to farmers. 


Testing soil for fatty acid levels

A relatively new soil-testing technique is the analysis of fatty acid levels in soils, Ward says. “Fatty acids are components of living organisms, and the test can be used to estimate the total living microbial biomass in fresh soils. Microorganisms produce an organic glue that aids in the formation of soil structure. Organic matter also stores nutrients that can’t be directly absorbed by plants. Microbes consume organic matter as a carbon source and make the nitrogen therein available to plants. Organic matter is probably the most important component of soils and indicator of soil health,” he says.


No-till advantage

Ward explains that tillage causes an influx of oxygen, which leads to the rapid breakdown of organic matter.

“Although there’s a short-term increase in fertility, it will quickly drop,” Ward acknowledges. “The slower breakdown of organic matter with no-till is ultimately more beneficial.” 

Building up organic matter is one of the huge benefits of cover crops, Ward says. Cover plants add diversity to what’s become a monoculture; they also absorb nutrients and release them during decomposition. Their residues reduce soil and wind erosion, inhibit soil moisture evaporation, and improve water retention, all of which contribute to overall soil health.

“I’m an advocate of using a mixture of cover crops,” Ward says. “I call it a cocktail mixture of grasses and broadleafs, such as pearl millet, sudan, oats, buckwheat, turnips, milo, sunflowers, flax, and spring peas. When you plant a mixture of cover crops, the seed depth is set for the larger seeds. When they sprout, the ground is cracked, allowing the smaller seedlings to emerge. Such a cover crop mix would be used, for instance, in a five-year crop rotation of corn-corn-soybeans-wheat (a cover crop planted into the wheat stubble)-beans.” 

CancelPost Comment
MORE FROM EUGENE BLAKE more +

No-till: A continuing education By: 03/07/2014 @ 2:49pm "It’s like being in graduate school.” That’s how Steve Schmidt of Caldwell, Kansas, describes…

No-till yields as good By: 03/07/2014 @ 1:49pm The key to success at no-till? That would be the planter, contends David Schnoor of Scribner…

70 cover crops and counting By: 05/08/2013 @ 1:50pm Gail Fuller is something of a pioneer in no-till circles. The Emporia, Kansas, producer began…

MEDIA CENTERmore +
This container should display a .swf file. If not, you may need to upgrade your Flash player.
Soybeans Rally on Demand, Weather